
Increasing programmability

with	
 domain-­‐specific	
 languages	

	

Kris6an	
 Sandahl,	
 Peter	
 Fritzson,	
 Christoph	
 Kessler	

PELAB	

Department	
 of	
 Computer	
 and	
 Informa6on	
 Science	

Linköping	
 University	

PELAB at a Glance

•  Programming	
 environments	
 laboratory,	
 founded	
 in	
 1981	

•  Staff:	
 5	
 professors,	
 4	
 assistant	
 professors,	
 11	
 phd	
 students,	
 4	
 engineers	

•  Current	
 topics:	

•  Compiler	
 technology	
 	

•  SoQware	
 composi6on	
 	

•  Parallel	
 compu6ng	
 	

•  Design	
 and	
 implementa6on	
 of	
 programming	
 and	
 modeling	
 languages	
 and	
 systems	
 	

•  Equa6on-­‐based	
 object-­‐oriented	
 modeling	
 and	
 simula6on	
 languages	
 	

•  Large-­‐scale	
 soQware	
 engineering	
 	

•  Requirements	
 engineering	
 	

•  SoQware	
 tes6ng	
 and	
 debugging	

	

Problem

• Produc6vity	
 and	
 Quality	
 of	
 human-­‐made	
 soQware	

Means
 Raise	
 the	
 abstrac6on	
 level	

Model-­‐based	
 SoQware	

Engineering	

Domain-­‐specific	

Languages	
 Skeletons	
 and	
 paWerns	

SoQware	
 models	
 System	
 models	

MODELICA	

SySML	

Simula6on	
 Visualiza6on	
 Valida6on	

Parallel	
 programming	
 and	
 mul6core	
 processing	

SkePU	
 skeleton	
 programming	

Sequen6al	
 interface	

Heterogeneous	
 systems	
 Pla[orm	
 agnos6c	
 High-­‐level	
 constructs	

Use	

September 25, 2014

STEW Workshop

 Peter Fritzson

 Professor at Linköping University, Sweden
 Vice Chairman of Modelica Association
 Director of Open Source Modelica Consortium
 Senior Member, IEEE

 peter.fritzson@liu.se

Modelica – A Cyber-Physical Modeling Language
for Systems Engineering and the OpenModelica

Environment

6

What is Modelica?

•  Robotics
•  Control
•  Automotive
•  Aircraft
•  Satellites
•  Power plants
•  Systems biology

A language for modeling of complex cyber-physical systems

7

What is Special about Modelica?

Multi-Domain
Modeling

Cyber-Physical Modeling

Physical

Cyber

3 domains
-  electric
-  mechanics
-  control

8

inertial
x
y

axis1

axis2

axis3

axis4

axis5

axis6
r3Drive1

1
r3Motor

r3ControlqdRef
1

S

qRef
1

S

k2

i

k1

i

qddRef cut joint

q: angle
qd: angular velocity

qdd: angular acceleration

qd

tn

Jmotor=J

gear=i

spring=c

fri
c=
Rv
0

S
rel

joint=0

S

Vs

-

+
diff

-

+
pow er

emf

La=(250/(2*D*w
m))

Ra=250

Rd2=100

C=0.004*D/w m

-

+
OpI

Rd1=100

Ri=10

Rp1=200

Rp
2=

50

Rd4=100

hall2

Rd
3=

10
0

g1

g2

g3

hall1

g4

g5

rw

cut in

iRef

qd q

rate2

b(s)

a(s)

rate3

340.8

S

rate1

b(s)

a(s)

tacho1

PT1

Kd

0.03

wSum

-

sum

+1

+1

pSum

-

Kv

0.3

tacho2

b(s)

a(s)

q qd

iRefqRef

qdRef

Courtesy of Martin Otter

What is Special about Modelica?

Visual Acausal
Hierarchical
Component

Modeling

Multi-Domain
Modeling

Hierarchical system
modeling

Srel = n*transpose(n)+(identity(3)- n*transpose(n))*cos(q)- skew(n)*sin(q);
wrela = n*qd;
zrela = n*qdd;
Sb = Sa*transpose(Srel);
r0b = r0a;
vb = Srel*va;
wb = Srel*(wa + wrela);
ab = Srel*aa;
zb = Srel*(za + zrela + cross(wa, wrela));

9

Graphical and Textual View

•  A DC motor can be thought of as an electrical circuit which
also contains an electromechanical component
model DCMotor
 Resistor R(R=100);
 Inductor L(L=100);
 VsourceDC DC(f=10);
 Ground G;
 ElectroMechanicalElement EM(k=10,J=10, b=2);
 Inertia load;
equation
 connect(DC.p,R.n);
 connect(R.p,L.n);
 connect(L.p, EM.n);
 connect(EM.p, DC.n);
 connect(DC.n,G.p);
 connect(EM.flange,load.flange);
end DCMotor

load

EM
DC

G

R L

10

Application of Modelica in Robotics Models
Real-time Training Simulator for Flight, Driving

•  Using Modelica models
generating real-time
code

•  Different simulation
environments (e.g.
Flight, Car Driving,
Helicopter)

•  Developed at DLR
Munich, Germany

•  Dymola Modelica tool

Courtesy of Martin Otter, DLR, Oberphaffenhofen,
Germany

11

Modelica Standard Library
Open Source, Developed by Modelica Association

•  Blocks Library for basic input/output control blocks
•  Constants Mathematical constants and constants of nature
•  Electrical Library for electrical models
•  Icons Icon definitions
•  Fluid 1-dim Flow in networks of vessels, pipes, fluid machines, valves, etc.
•  Math Mathematical functions
•  Magnetic Magnetic.Fluxtubes – for magnetic applications
•  Mechanics Library for mechanical systems
•  Media Media models for liquids and gases
•  SIunits Type definitions based on SI units according to ISO 31-1992
•  Stategraph Hierarchical state machines (analogous to Statecharts)
•  Thermal Components for thermal systems
•  Utilities Utility functions especially for scripting

The Modelica Standard Library contains components from
various application areas, including the following sublibraries:

12

•  Advanced Interactive Modelica compiler (OMC)
•  Supports most of the Modelica Language
•  Modelica and Python scripting

•  Basic environment for creating models
•  OMShell – an interactive command handler
•  OMNotebook – a literate programming notebook
•  MDT – an advanced textual environment in Eclipse

12

•  OMEdit graphic Editor
•  OMDebugger for equations
•  OMOptim optimization tool
•  OM Dynamic optimizer collocation
•  ModelicaML UML Profile
•  MetaModelica extension
•  ParModelica extension

The OpenModelica Open Source Environment
www.openmodelica.org

13

Industrial members
•  Bosch Rexroth AG, Germany
• Siemens PLM, California, USA
• Siemens Turbo, Sweden
•  CDAC Centre, Kerala, India
•  Creative Connections, Prague
•  DHI, Aarhus, Denmark
•  EDF, Paris, France
•  Equa Simulation AB, Sweden
•  Fraunhofer IWES, Bremerhaven
•  Frontway AB, Sweden
•  IFP, Paris, France

 Open-source community services
•  Website and Support Forum
•  Version-controlled source base
•  Bug database
•  Development courses
•  www.openmodelica.org

Code Statistics
•  Austrian Inst. of Tech, Austria
•  Linköping University, Sweden
•  UC Berkeley, USA
• TU Berlin, Insti UEBB, Germany
•  FH Bielefeld, Bielefeld, Germany
• TU Braunschweig, Germany
•  Univ Calabria, Italy
•  Danish Technical Univ, Denmark
• TU Dortmund, Germany
• TU Dresden, Germany
•  Université Laval, Canada
•  Georgia Inst. Technology, USA

University members

OSMC – International Consortium for Open Source
Model-based Development Tools, 46 members Mar 2014

Founded Dec 4, 2007
•  GTI, USA
•  ISID Dentsu, Tokyo, Japan
•  ITI, Dresden, Germany
•  Maplesoft, Canada
•  Ricardo Inc., USA
•  STEAG, Dehli, India
• TLK Thermo, Germany
• Sozhou Tongyuan, China
•  VTI, Linköping, Sweden
•  VTT, Finland
•  Wolfram MathCore, Sweden

•  Ghent University, Belgium
•  Halmstad University, Sweden
•  Heidelberg University, Germany
•  TU Hamburg/Harburg Germany
•  KTH, Stockholm, Sweden
•  Univ of Maryland, Syst Eng USA
•  Univ of Maryland, CEEE, USA
•  Politecnico di Milano, Italy
•  Ecoles des Mines, CEP, France
•  Mälardalen University, Sweden
•  Univ Pisa, Italy
• Telemark Univ College, Norway

14

OpenModelica MDT Eclipse Plug-in
with OpenModelica Algorithmic Code Debugger

15

General Tool Interoperability & Model Exchange
Functional Mock-up Interface (FMI)

•  FMI development initiated by Daimler
•  Improved Software/Model/Hardware-in-the-Loop Simulation, of physical

models and of AUTOSAR controller models from different vendors for
automotive applications with different levels of detail.

•  Open Standard, standardized by Modelica Association
•  14 automotive use cases for evaluation
•  > 40 tool vendors are supporting it

The FMI development a result of the MODELISAR 29-partner project

Engine
with ECU

Gearbox
with ECU

Thermal
systems

Automated
cargo door

Chassis components,
roadway, ECU (e.g. ESP)

etc.

functional mockup interface for model exchange and tool coupling
courtesy Daimler

16

Simulation and Requirements Checking
Tank system example

Req. 001 is instantiated 2 times
(there are 2 tanks in the system)

tank-height is 0.6m

Req. 001 for the tank2 is
violated

Req. 001 for the tank1 is not
violated

17

ParModelica – Modelica Parallel Algorithmic Programming
Execution on GPUs and CPUs via portable OPENCL code generation

Gained speedup
•  Intel Xeon E5520 CPU (16 cores) 26
•  NVIDIA Fermi-Tesla M2050 GPU (448 cores) 115

Speedup comparison to sequential algorithm on Intel Xeon E5520 CPU

32 64 128 256 512
CPU E5520 (Serial) 0.093 0.741 5.875 58.426 465.234

CPU E5520 (Parallel) 0.137 0.17 0.438 2.36 17.66

GPU M2050 (Parallel) 1.215 1.217 1.274 1.625 4.057

0.0625
0.125

0.25
0.5

1
2
4
8

16
32
64

128
256
512

Si
m

ul
at

io
n

Ti
m

e
(s

ec
on

d)

4.36 13.41 24.76 26.34
0.61 4.61

35.95

114.67

64 128 256 512
Parameter M (Matrix sizes MxM)

Speedup
CPU E5520 GPU M2050

Matrix Multiplication application

18

Get More Information, Download Software

Peter Fritzson
Principles of Object Oriented
Modeling and Simulation with
Modelica 3.3
A Cyber-Physical Approach

Wiley-IEEE Press, 2014 1250 pages

•  OpenModelica
•  www.openmodelica.org

•  Modelica
Association
•  www.modelica.org

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.High-Level Programming 
for Heterogeneous Systems  

using Skeletons*"
Christoph Kessler  

  
Linköping University  

Sweden 
  
 

*This research is funded by EU FP7 projects PEPPHER and EXCESS, and by SeRC"

EXCESS

20" "

The Computer Engineer’s Solution Today:  
Heterogeneous Multicore"

Programmable  
Hardware Accelerator  

"

Offload  
certain

computation#

Data
transfer#

#
#
#
 

Device#
memory#

Core#

Core#

Core#

Core#

Main Memory#

J More energy-efficient than general-purpose sequential  
 resp. general-purpose multicore CPU#
J Hardware-tailored parallel programming models#
J Detailed resource control#

General- 
purpose"
 CPU"

21" "

The Application Programmer’s Nightmare:  
Heterogeneous Multicore"

Programmable  
Hardware Accelerator  

"

Offload  
certain

computation#

Data
transfer#

#
#
#
 

Device#
memory#

Core#

Core#

Core#

Core#

Main Memory#

L Distributed Memory or Non-coherent Shared Memory#
L  Different Programming Models#
L  Low Abstraction Level#
L  Require Architecture- 
 specific Optimization#

General- 
purpose"
 CPU"

22" "

Common: GPU-Based Systems"

CPU"

GPU  
"

Offload  
heavy

computation#

Data
transfer#

#
#
#
 

Device#
memory#

Core#

Core#

Core#

Core#

Main Memory#

L Distributed Memory#
L  Different Programming Models#
L  Low Abstraction Level#
L  Require Architecture- 
 specific Optimization#

23" "

Common: GPU-Based Systems"

CPU"

GPU  
"

Offload  
heavy

computation#

Data
transfer#

#
#
#
 

Device#
memory#

Core#

Core#

Core#

Core#

Main Memory#

#
#
#
 

Device#
memory#

…#GPU  
"

L Distributed Memory#
L  Different Programming Models#
L  Low Abstraction Level#
L  Require Architecture- 
 specific Optimization#

24" "

Programming of GPU-based Systems  
… with OpenCL™ (?) 
 
- Code portability J  
- Programmability L (low level)  
- Performance portability L (requires reoptimization)#

CPU"

GPU  
"

Offload  
heavy

computation#

Data
transfer#

#
#
#
 

Device#
memory#

Core#

Core#

Core#

Core#

Main Memory#

25" "

Skeleton Programming"

  A skeleton is a pre-defined generic software component that #
 Models a common computation / dependence pattern#

à well-defined semantics; metadata implicit#
 Can be customized with sequential user code"
 Provides a sequential interface#
 Encapsulates all platform-specific implementation details  

(parallelism, heterogeneity, memory management, …)#

26" "

SkePU www.ida.liu.se/~chrke/skepu#

  C++ template library targeting GPU-based systems#
  6 dataparallel skeletons#

  Map, Reduce, Scan,  
MapReduce, MapArray, MapOverlap (stencil)#

  1 task-parallel skeleton: farm#
  STL-based containers wrapping operand data#

  Smart containers Vector<…>, Matrix<…> 
optimizing data transfers and memory management at runtime#

  Generation of platform-specific variants for user functions#
  Multiple back-ends: C, OpenMP, OpenCL, CUDA, StarPU, (MPI)#

  Hybrid CPU-GPU execution (with StarPU backend)#
  Multi-GPU support #

  Low overhead#
  Auto-tunable [Dastgeer et al. IWMSE’11, MULTIPROG’12, APPT’13; PhD’14]#
  Open-source#

27" "

Summary"
  Domain-specific languages#

 High level of abstraction#
 Automatic code generation#

  Model-based development of Cyber-Physical Systems#
 OpenModelica open-source environment#

  Skeleton programming #
 Parallelism, heterogeneity, communication managed internally#
 Performance, portability and automatic optimizations for free!#

