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PELAB  at  a  Glance


•  Programming	
  environments	
  laboratory,	
  founded	
  in	
  1981	
  
•  Staff:	
  5	
  professors,	
  4	
  assistant	
  professors,	
  11	
  phd	
  students,	
  4	
  engineers	
  
•  Current	
  topics:	
  

•  Compiler	
  technology	
  	
  
•  SoQware	
  composi6on	
  	
  
•  Parallel	
  compu6ng	
  	
  
•  Design	
  and	
  implementa6on	
  of	
  programming	
  and	
  modeling	
  languages	
  and	
  systems	
  	
  
•  Equa6on-­‐based	
  object-­‐oriented	
  modeling	
  and	
  simula6on	
  languages	
  	
  
•  Large-­‐scale	
  soQware	
  engineering	
  	
  
•  Requirements	
  engineering	
  	
  
•  SoQware	
  tes6ng	
  and	
  debugging	
  

	
  



Problem


• Produc6vity	
  and	
  Quality	
  of	
  human-­‐made	
  soQware	
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What is Modelica? 

•  Robotics 
•  Control 
•  Automotive 
•  Aircraft 
•  Satellites 
•  Power plants 
•  Systems biology 

A language for modeling of complex cyber-physical systems 
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What is Special about Modelica? 

Multi-Domain 
Modeling 

Cyber-Physical Modeling 

Physical 

Cyber 

3 domains 
-  electric 
-  mechanics 
-  control 
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Courtesy of Martin Otter 

What is Special about Modelica? 

Visual Acausal 
Hierarchical 
Component  

Modeling 

Multi-Domain 
Modeling 

Hierarchical system 
modeling 

Srel = n*transpose(n)+(identity(3)- n*transpose(n))*cos(q)- skew(n)*sin(q); 
wrela = n*qd; 
zrela = n*qdd; 
Sb = Sa*transpose(Srel); 
r0b = r0a; 
vb = Srel*va; 
wb = Srel*(wa + wrela); 
ab = Srel*aa; 
zb = Srel*(za + zrela + cross(wa, wrela)); 
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Graphical and Textual View 

•  A DC motor can be thought of as an electrical circuit which 
also contains an electromechanical component 
model DCMotor 
   Resistor R(R=100); 
   Inductor L(L=100); 
   VsourceDC DC(f=10); 
   Ground G; 
   ElectroMechanicalElement EM(k=10,J=10, b=2); 
   Inertia load; 
equation 
   connect(DC.p,R.n); 
   connect(R.p,L.n); 
   connect(L.p, EM.n); 
   connect(EM.p, DC.n); 
   connect(DC.n,G.p); 
   connect(EM.flange,load.flange); 
end DCMotor  

 

load 

EM 
DC 

G 

R L 
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Application of Modelica in Robotics Models 
Real-time Training Simulator for Flight, Driving 

•  Using Modelica models 
generating real-time 
code 

•  Different simulation 
environments (e.g. 
Flight, Car Driving, 
Helicopter) 

•  Developed at DLR 
Munich, Germany 

•  Dymola Modelica tool 

Courtesy of  Martin Otter, DLR, Oberphaffenhofen, 
Germany 
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Modelica Standard Library  
Open Source, Developed by Modelica Association 

•  Blocks  Library for basic input/output control blocks 
•  Constants  Mathematical constants and constants of nature 
•  Electrical  Library for electrical models 
•  Icons  Icon definitions 
•  Fluid  1-dim Flow in networks of vessels, pipes, fluid machines, valves, etc. 
•  Math  Mathematical functions 
•  Magnetic  Magnetic.Fluxtubes – for magnetic applications 
•  Mechanics  Library for mechanical systems 
•  Media  Media models for liquids and gases 
•  SIunits  Type definitions based on SI units according to ISO 31-1992 
•  Stategraph  Hierarchical state machines (analogous to Statecharts) 
•  Thermal  Components for thermal systems 
•  Utilities  Utility functions especially for scripting 

The Modelica Standard Library contains components from 
various application areas, including the following sublibraries: 
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•  Advanced Interactive Modelica compiler (OMC) 
•  Supports most of the Modelica Language 
•  Modelica and Python scripting 

•  Basic environment for creating models  
•  OMShell – an interactive command handler    
•  OMNotebook – a literate programming notebook  
•  MDT – an advanced textual environment in Eclipse 

12 

•  OMEdit graphic Editor 
•  OMDebugger for equations 
•  OMOptim optimization tool 
•  OM Dynamic optimizer collocation 
•  ModelicaML UML Profile 
•  MetaModelica extension 
•  ParModelica extension 

The OpenModelica Open Source Environment   
www.openmodelica.org 
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Industrial members 
•  Bosch Rexroth AG, Germany   
• Siemens PLM, California, USA 
• Siemens Turbo, Sweden  
•  CDAC Centre, Kerala, India  
•  Creative Connections, Prague 
•  DHI, Aarhus, Denmark 
•  EDF, Paris, France 
•  Equa Simulation AB, Sweden 
•  Fraunhofer IWES, Bremerhaven 
•  Frontway AB, Sweden   
•  IFP, Paris, France  

 Open-source community services 
•  Website and Support Forum 
•  Version-controlled source base 
•  Bug database 
•  Development courses 
•  www.openmodelica.org 

Code Statistics 
•  Austrian Inst. of Tech, Austria 
•  Linköping University, Sweden 
•  UC Berkeley, USA   
• TU Berlin, Insti UEBB, Germany 
•  FH Bielefeld, Bielefeld, Germany 
• TU Braunschweig, Germany   
•  Univ Calabria, Italy 
•  Danish Technical Univ, Denmark 
• TU Dortmund, Germany 
• TU Dresden, Germany 
•  Université Laval, Canada  
•  Georgia Inst. Technology, USA 

University members 

OSMC – International Consortium for Open Source 
Model-based Development Tools, 46 members Mar 2014 

Founded Dec 4, 2007 
•  GTI, USA 
•  ISID Dentsu, Tokyo, Japan 
•  ITI, Dresden, Germany 
•  Maplesoft, Canada   
•  Ricardo Inc., USA 
•  STEAG, Dehli, India 
• TLK Thermo, Germany  
• Sozhou Tongyuan, China 
•  VTI, Linköping, Sweden 
•  VTT, Finland   
•  Wolfram MathCore, Sweden  

•   Ghent University, Belgium 
•  Halmstad University, Sweden 
•  Heidelberg University, Germany   
•  TU Hamburg/Harburg Germany  
•  KTH, Stockholm, Sweden  
•  Univ of Maryland, Syst Eng USA                                                                                                                                                                                                                                 
•  Univ of Maryland, CEEE, USA                                                                                                                                                                                                                                 
•  Politecnico di Milano, Italy  
•  Ecoles des Mines, CEP, France 
•  Mälardalen University, Sweden  
•  Univ Pisa, Italy 
• Telemark Univ College, Norway 
 



14 

OpenModelica MDT Eclipse Plug-in 
with OpenModelica Algorithmic Code Debugger 



15 

General Tool Interoperability & Model Exchange 
Functional Mock-up Interface (FMI)  
 

•  FMI development initiated by Daimler 
•  Improved Software/Model/Hardware-in-the-Loop Simulation, of physical 

models and of AUTOSAR controller models from different vendors for 
automotive applications with different levels of detail. 

•  Open Standard, standardized by Modelica Association 
•  14 automotive use cases for evaluation 
•  > 40 tool vendors are supporting it 

The FMI development a result of the MODELISAR 29-partner project 

 

Engine 
with ECU 

Gearbox 
with ECU 

Thermal 
systems 

Automated 
cargo door 

Chassis components, 
roadway, ECU (e.g. ESP) 

etc. 

functional mockup interface for model exchange and tool coupling 
courtesy Daimler 
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Simulation and Requirements Checking 
Tank system example 

Req. 001 is instantiated 2 times 
(there are 2 tanks in the system) 

tank-height is 0.6m 

Req. 001 for the tank2  is 
violated 

Req. 001 for the tank1  is not 
violated 
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ParModelica – Modelica Parallel Algorithmic Programming 
Execution on GPUs and CPUs via portable OPENCL code generation 

Gained speedup 
•  Intel Xeon E5520 CPU (16 cores)   26 
•  NVIDIA Fermi-Tesla M2050 GPU (448 cores)  115 

Speedup comparison to sequential algorithm on Intel Xeon E5520 CPU 

32 64 128 256 512 
CPU E5520   (Serial) 0.093 0.741 5.875 58.426 465.234 

CPU E5520   (Parallel) 0.137 0.17 0.438 2.36 17.66 

GPU M2050 (Parallel) 1.215 1.217 1.274 1.625 4.057 
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Matrix Multiplication application 
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Get More Information, Download Software  

Peter Fritzson  
Principles of Object Oriented 
Modeling and Simulation with 
Modelica 3.3 
A Cyber-Physical Approach 
 
Wiley-IEEE Press, 2014    1250 pages 
 
 

•  OpenModelica 
•  www.openmodelica.org  

•  Modelica 
Association 
•  www.modelica.org  

 



The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.High-Level Programming 
for Heterogeneous Systems  

using Skeletons*"
Christoph Kessler  

  
Linköping University  

Sweden 
  
 

*This research is funded by EU FP7 projects PEPPHER and EXCESS,   and  by SeRC"

EXCESS 
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The Computer Engineer’s Solution Today:  
Heterogeneous Multicore"

Programmable  
Hardware Accelerator  

"

Offload  
certain 

computation#

Data 
transfer#

#
#
#
 

Device#
memory#

Core#

Core#

Core#

Core#

Main Memory#

J More energy-efficient than general-purpose sequential  
     resp. general-purpose multicore CPU#
J Hardware-tailored parallel programming models#
J Detailed resource control#

General- 
purpose"
  CPU"
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The Application Programmer’s Nightmare:  
Heterogeneous Multicore"

Programmable  
Hardware Accelerator  

"

Offload  
certain 

computation#

Data 
transfer#

#
#
#
 

Device#
memory#

Core#

Core#

Core#

Core#

Main Memory#

L Distributed Memory or Non-coherent Shared Memory#
L  Different Programming Models#
L  Low Abstraction Level#
L  Require Architecture- 
    specific Optimization#

General- 
purpose"
  CPU"
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Common: GPU-Based Systems"

CPU"

GPU  
"

Offload  
heavy 

computation#

Data 
transfer#

#
#
#
 

Device#
memory#

Core#

Core#

Core#

Core#

Main Memory#

L Distributed Memory#
L  Different Programming Models#
L  Low Abstraction Level#
L  Require Architecture- 
    specific Optimization#
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Common: GPU-Based Systems"

CPU"

GPU  
"

Offload  
heavy 

computation#

Data 
transfer#

#
#
#
 

Device#
memory#

Core#

Core#

Core#

Core#

Main Memory#

#
#
#
 

Device#
memory#

…#GPU  
"

L Distributed Memory#
L  Different Programming Models#
L  Low Abstraction Level#
L  Require Architecture- 
    specific Optimization#
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Programming of GPU-based Systems  
… with OpenCL™  (?) 
 
- Code portability J  
- Programmability L  (low level)  
- Performance portability L  (requires reoptimization)#

CPU"

GPU  
"

Offload  
heavy 

computation#

Data 
transfer#

#
#
#
 

Device#
memory#

Core#

Core#

Core#

Core#

Main Memory#
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Skeleton Programming"

  A skeleton is a pre-defined generic software component that #
 Models a common computation / dependence pattern#

à well-defined semantics; metadata implicit#
 Can be customized with sequential user code"
 Provides a sequential interface#
 Encapsulates all platform-specific implementation details  

(parallelism, heterogeneity, memory management, …)#
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SkePU  www.ida.liu.se/~chrke/skepu#

  C++ template library targeting GPU-based systems#
  6 dataparallel skeletons#

  Map, Reduce, Scan,  
MapReduce, MapArray, MapOverlap (stencil)#

  1 task-parallel skeleton:  farm#
  STL-based containers wrapping operand data#

  Smart containers Vector<…>, Matrix<…> 
optimizing data transfers and memory management at runtime#

  Generation of platform-specific variants for user functions#
  Multiple back-ends: C, OpenMP, OpenCL, CUDA, StarPU, (MPI)#

  Hybrid CPU-GPU execution (with StarPU backend)#
  Multi-GPU support #

  Low overhead#
  Auto-tunable [Dastgeer et al. IWMSE’11, MULTIPROG’12, APPT’13; PhD’14]#
  Open-source#
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Summary"
  Domain-specific languages#

 High level of abstraction#
 Automatic code generation#

  Model-based development of Cyber-Physical Systems#
 OpenModelica open-source environment#

  Skeleton programming #
 Parallelism, heterogeneity, communication managed internally#
 Performance, portability and automatic optimizations for free!#


