

# World Class Innovation, Research and Education in Sweden

Stefan Andersson, Chairman of Swedsoft STEW Linköping 2016-10-13

## Outline

### • Trends and Challenges

- Swedsoft's Mission
- The Future



### More Software

- Larger software systems in end-products as well as in the development environment
- Hardware becomes software
- Products become services
- Affects all industries traditional industries such as automotive becomes "IT-companies"



Growth of embedded software: approx. 10 times in 7 years C. Ebert; C. Jones (2009)



### **Need for New Competences**

Number of employees in software and systems engineering +47% during 2005-2012



### Increased unemployment AND Shortage of labor force



\*) European Commission survey: "main factor limiting production is shortage of labour force" as a proxy of the vacancyratio.

Source: European Commission

Source: SCB and Stockholm Chamber of Commerce

### Increased System Complexity







System of services Cloud

Internet-of-Things and People Across domains

Embedded Systems Cyber-Physical Systems

**Computer Program** 

Hardware Components

Need to consider the design chain from chip to cloud in order to "prove" certain system characteristics such as:

- Resilience
- Efficiency and performance
- Safety and Security





### More Complex Organizations



- Cross-functional Team
- Multiple aspects/concerns
- Dynamic structures

- Distributed Teams
- Multiple Cultures

### Interconnected Smart Systems

#### **Characteristics of future products**

|                            | 57% | Intelligence |
|----------------------------|-----|--------------|
|                            | 57% | Networking   |
| 38% Increased function     | 'n  |              |
| 30% User-friendliness      |     |              |
| 27% Automation             |     |              |
| 27% Efficiency             |     |              |
| 17% Complexity             |     |              |
| 13% Multidisciplinarity    |     |              |
| 13% High modularisation    |     |              |
| 12% High reliability       |     |              |
| 10% High flexibility       |     |              |
| 9% Hybrid service packages |     |              |
| 7% Miniaturisation         |     |              |
| 7% High standardisation    |     |              |

#### **Functions**

- Artificial Intelligence
- Adaptive / Learning systems
- Handling Big Data

#### **Co-operation**

- Man-Machine
- Machine-machine

Mentions/Number of respondents

"Systems Engineering in Industrial Practice" (Paderborn, 2015) Heinz Nixdorf Institute, University of Paderborn, Fraunhofer Institute for Production Technology IPT, UNITY AG

### A More Dynamic World

- More companies act globally
  - New players in all industries
  - New threats and opportunities
- Need for faster and more agile companies
  - Continuous renewal
  - Exploit changes instead of handling them
  - Learn from customers and users
  - Embrace innovation as part of everyday life



Rate of change among the 1000 largest American companies, ranked by revenues.

### **Competitive AND Attractive**

Need for **competiveness** in all aspects:

- **Design** Aesthetics, User Experience
- **Quality** Usability, Performance, Reliability,...
- **Speed** Lead time, Time-to-market
- Cost Affordability, Life-cycle Cost

This drives the need for collaboration and thus to be **attractive** for partnership (win-win).

### QUALITY



Joseph Juran, 1904-2008

The characteristics of a product or service that bear on its ability to satisfy stated or implied needs; A product or service free of deficiencies.

ASQ, American Society for Quality



### WHY IS QUALITY IMPORTANT?

#### Human safety

• Risk for injuries or death either due to failures

#### Security

- The protection of personnel and assets from threats.
- Threats are the potential for abuse of protected data, communication channels or devices

#### **Mission Reliability**

• Probability of function or mission success

#### Example of other consequences of poor quality

- Environment Unintended pollution
- Economical Bank services, stock market failures
- Legal Failure leading to breaking export control laws
- Trust Failures leading to mistrust and a weaker brand



The Real Cost of Software Errors (IEEE Security & Privacy Magazine 7.2 (2009): 87–90)

### QUALITY ASSURANCE





## Outline

- Trends and Challenges
- Swedsoft's Mission
- The Future



### **Mission Statement**

- **Swedsoft** works to strengthen Sweden as an internationally recognized *research* and *innovation* centre regarding software intensive systems and thus contribute to national growth and welfare.
- Made in Sweden Swedish-developed software shall, in the international competition be considered as innovative, of high quality and cost efficient.



### Scope / Focus Areas

- Software Systems Engineering
- Computer Science / Software Technology
- Leadership and Organization



### Swedsoft Promotes Systems Thinking in Software Development



# Swedsoft Promotes Innovation in all Aspects

**Product** New features, new architectures, e.g. cloud technology

Process New processes and methods, e.g. agile methods

**Business** Business model innovation, e.g. software as a service, open source

**Organization** New organizational models, e.g. innovation eco systems

### Swedsoft influences Research Strategies and Research Calls



### Goals

- Innovations and Swedish industrial competitiveness
  is world class
- Swedish research in Software is highly ranked, quoted and used
- Swedish education in software, from primary to higher university education, and support for lifelong learning, is an international role model

### Values

Swedsoft's values, **Bold**, **Inspiring**, **Trustworthy**, mean that:

- We are open to collaborations and to new ideas
- We are actively engaged in Swedsoft's activities
- We deliver results







## Outline

- Trends and Challenges
- Why Swedsoft?
- The Future



### The Future – Software Systems

- Design for Safety, Security and Resilience
- Model-based Systems Engineering better than hand coding
- Correct by design and Formal Verification
- Verification of self learning and adaptive (smart) systems
- Automation (Design, Test, Production) in Software Development
- Efficiency and high quality at the same time
- Design, Acquisition and Use of large software systems in the public domain

### The Future – Swedsoft

- Continue to contribute to better education (Trippel Helix etc)
- Continue to contribute to integration of immigrants (UDI)
- Initiate project to provide facts and figures about software in Sweden
- Contribute to thriving research and industry clusters in all regions of Sweden (South, West, East, Mid and North)
- Lobbying for Life Long learning and Swedish Research
- Continue with networking activities
- Recruit and involve more members



## We need more people to be active in Swedsoft

- Initiate a new projects
- Get engaged in a current projects
- Be a part of the STEW working group
- Host and arrange a Swedsoft event
- Be a promoter of Swedsoft's mission

... or is there something else you want to do?

Tell us! Contact us...



www.template.net

Kontakt: Gabriel Modéus, 08-782 09 79, gabriel@swedsoft.se Generalsekreterare

Stefan Andersson, 0734-18 18 33, stefan.andersson@saabgroup.com *Ordförande* 

www.swedsoft.se



#### SAMLAR SVENSK MJUKVARA