
SCALING AGILE IN
MECHATRONICS-DRIVEN
COMPANIES

ULRIK EKLUND, MALMÖ UNIVERSITY

CHRISTIAN BERGER, UNIVERSITY OF GOTHENBURG

SOFTWARE CENTER
PROJECT

Goal
to identify how to scale
agile software
development beyond
individual teams in
large organizations
presently focusing on
the development,
manufacturing and
delivery of their
physical products

Industrial Partners:
Volvo Car Group

AB Volvo

Grundfos

SAAB Electronic
Defence Systems
Axis

Tetra Pak

CONTEXT
Many organizations have successfully introduced agile
development on the team level

•  Individual teams define their own ways of working to facilitate
speed, short iterations, and delivery quality.

But agile speed is not seen in the organisation as a whole!
Causes may include

•  S/W subcontractors tied up in sourcing agreements,
•  software interfacing with hardware and mechanics, and
•  certification processes

VOLVO PRODUCT
DEVELOPMENT SYSTEM
Overview of Volvo Cars stage-gate planning omitted on
purpose!

For a very high level overview see e.g:

http://www3.volvo.com/investors/finrep/sr11/en/
enviromentalrespons/productdevelopment/
globalproductdevelo/pdf/
Global_product_development_process.pdf

Software coding

System & architecture
design

Requirements analysis

Module design

”The agile
loop”

Module
test

Product validation

System test

Projects where
manufacturing and
hardware development
have long lead-times
(years instead of weeks)

In contrast individual
software teams are able
to reprioritize and
implement features in
2-4 week cycles

Effort is spent on
aligning the practices of
the individual teams to
the overall R&D process

THE LOCAL ”AGILE
LOOP”

CASE STUDY
Method
•  Empirical study

•  Mainly qualitative
data collection

•  Inductive approach
to analysis

Two phases
1.  Investigate

expectations and
challenges
Reported at XP conference 2015

2.  Identify checklist of
practices and
actions

SURVEY RESULT: USE
OF AGILE PRACTICES

2%
2%
9%
7%

9%
4%

11%
15%

83%
65%
63%
61%

54%
54%

46%
33%

15%
33%

28%
33%

37%
41%

43%
52%

Sprints up to 4 weeks

Small teams
Regular stand−up meetings

Frequent reprioritization
Shared backlog

Test−driven development

Cross−functional team

Regular interaction with end−user

0 25 50 75 100
Percentage

Not applicable No Yes

Use of Agile Practices

SURVEY RESULT:
PERCEPTION OF AGILE

28%

17%

35%

26%

39%

50%

48%

43%

67%

61%

52%

52%

41%

37%

35%

30%

Individuals and interactions over processes and
tools

Working implementation over comprehensive
documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

Product implementation over product delivery

Product implementation over product integration

Flexibility over predefined plan

Teams over overall enterprise

100 50 0 50 100
Percentage

1 2 3 4 5 6 7

Where does your organization put emphasis on?

TOP EXPECTED
BENEFITS

1. Higher quality
2. Faster time−to−market
3. Shortening lead−times
4. Maximize output from existing

development resources
5. Minimize risk to develop wrong

things

COLLABORATION &
FEEDBACK

Single
Team

Integration
& System

Customer

Module

2-4 weeks

3-6 months

Once per
project

TOP CHALLENGES

1. Missing flexibility in current test
facilities

2. Better collaboration between all
disciplines

3. Changing the mindset in the
organization

4. Differentiate lead-times

COLLABORATION &
FEEDBACK

Single
Team

Module

D
elivery

Planning

Embedded software development

LARGE-SCALE AGILE
PRACTICES
A checklist of 208 agile practices
•  based on the empirical data in the study, of

which
•  26 practices were unique to the mechatronic

domain

Conclusion: The mechatronic domain should apply
known proven practices similar to other domains
in large scale agile development

ORGANISED CHECKLIST
ACCORDING TO:
Agile value &
agile maturity
level

Embrace
Change to

Deliver
Customer

Value

Plan and
Deliver

Software
Frequently

Human
Centricity

Technical
Excellence

Customer
Collaboration

Encompassing

Adaptive

Effective

Evolutionary

Collaborative

I. Stojanov, O. Turetken, and J. J. M. Trienekens, ‘A Maturity Model for Scaling Agile Development’, in 41st Euromicro Conference on
Software Engineering and Advanced Applications, 2015, pp. 446–453. DOI: 10.1109/SEAA.2015.29

COLLABORATIVE
MATURITY LEVEL
Human Centricity
•  Having an agile process to adjust technical intefaces
•  Multidisciplinary teams

Technical Excellence

•  Have multidisciplinary and joint doumentation

•  Quick and dirty hardware available to test software
functionality

•  Simplify technical interfaces

•  Software available to use in tests of hardware
development

EVOLUTIONARY
MATURITY LEVEL
Human Centricity
•  Minimise suppplier lead-times

Plan and Deliver Software Frequently
•  Don't modify off-the-shelf products

Technical Excellence
•  Identify the Minimum Viable Product to do software

integration
•  Speedy deployment of test software to the (prototype)

product

EFFECTIVE
MATURITY LEVEL
Human Centricity
•  Do not involve suppliers

•  Don't isolate disciplines

Technical Excellence

•  Do not depend on manual deployment

•  Integration is a continuous activity (every 4 weeks)

•  Move complexity from mechanics to software / moves lead-time

•  Move towards platforms
•  Software development is allowed to deliver a new release to

production every sprint

•  Target software is put as last on the hardware in production

ADAPTIVE
MATURITY LEVEL
Embrace Change to Deliver Customer Value
•  Reduce variant complexity

Plan and Deliver Software Frequently
•  Front-loading of the development process to

stream-line industrialisation is avoided
•  Not using the same planning/project gates for

HW and SW
•  Reduce variant complexity

ADAPTIVE
MATURITY LEVEL
Technical Excellence
•  Allow for integrations of not the full product (e.g.

by simulations)
•  Minimise the number of point of contacts

between SW, HW and mechanics
•  Reduce variant complexity (physical as well)

ENCOMPASSING
MATURITY LEVEL
Customer Collaboration
•  Allow for software deployment after production

GOLDEN RULE OF
INTEGRATIONS
A simple rule of thumb for integrations:
•  The cycle time for full integrations between software,

hardware and mechanics should be no longer than
4 weeks

•  A shorter cycle time (i.e. continuous integration on a
product level) benefits software development, but
not the other disciplines.

•  KPI for improvement: How many full integrations
are done in a project of a certain length?

