ONTOLOGY-BASED SOFTWARE
TEST CASE GENERATION
(OSTAG)

STEW Workshop, 13th October 2016
Vladimir Tarasov, J6nkdping University

PROJECT

* Funded by the Knowledge Foundation
- 2015-2017

* Industrial partners
« Saab Avionics (Jonkdping)
« AddQ (Gothenburg)
* Knowit (J6nkdping)

* Project team from J6nkoping University

* Vladimir, He Tan, Anders Adlemo, Anders Andersson,
Muhammad Ismail

« http://ju.se/en/research/research-groups/computer-science-
and-informatics/research-projects/ontology-based-software-
test-case-generation-ostag.html

2 " JONKOPING UNIVERSITY

School of Engineering

http://ju.se/en/research/research-groups/computer-science-and-informatics/research-projects/ontology-based-software-test-case-generation-ostag.html
http://ju.se/en/research/research-groups/computer-science-and-informatics/research-projects/ontology-based-software-test-case-generation-ostag.html
http://ju.se/en/research/research-groups/computer-science-and-informatics/research-projects/ontology-based-software-test-case-generation-ostag.html
http://ju.se/en/research/research-groups/computer-science-and-informatics/research-projects/ontology-based-software-test-case-generation-ostag.html
http://ju.se/en/research/research-groups/computer-science-and-informatics/research-projects/ontology-based-software-test-case-generation-ostag.html
http://ju.se/en/research/research-groups/computer-science-and-informatics/research-projects/ontology-based-software-test-case-generation-ostag.html
http://ju.se/en/research/research-groups/computer-science-and-informatics/research-projects/ontology-based-software-test-case-generation-ostag.html
http://ju.se/en/research/research-groups/computer-science-and-informatics/research-projects/ontology-based-software-test-case-generation-ostag.html
http://ju.se/en/research/research-groups/computer-science-and-informatics/research-projects/ontology-based-software-test-case-generation-ostag.html
http://ju.se/en/research/research-groups/computer-science-and-informatics/research-projects/ontology-based-software-test-case-generation-ostag.html
http://ju.se/en/research/research-groups/computer-science-and-informatics/research-projects/ontology-based-software-test-case-generation-ostag.html
http://ju.se/en/research/research-groups/computer-science-and-informatics/research-projects/ontology-based-software-test-case-generation-ostag.html
http://ju.se/en/research/research-groups/computer-science-and-informatics/research-projects/ontology-based-software-test-case-generation-ostag.html
http://ju.se/en/research/research-groups/computer-science-and-informatics/research-projects/ontology-based-software-test-case-generation-ostag.html
http://ju.se/en/research/research-groups/computer-science-and-informatics/research-projects/ontology-based-software-test-case-generation-ostag.html
http://ju.se/en/research/research-groups/computer-science-and-informatics/research-projects/ontology-based-software-test-case-generation-ostag.html
http://ju.se/en/research/research-groups/computer-science-and-informatics/research-projects/ontology-based-software-test-case-generation-ostag.html
http://ju.se/en/research/research-groups/computer-science-and-informatics/research-projects/ontology-based-software-test-case-generation-ostag.html
http://ju.se/en/research/research-groups/computer-science-and-informatics/research-projects/ontology-based-software-test-case-generation-ostag.html
http://ju.se/en/research/research-groups/computer-science-and-informatics/research-projects/ontology-based-software-test-case-generation-ostag.html
http://ju.se/en/research/research-groups/computer-science-and-informatics/research-projects/ontology-based-software-test-case-generation-ostag.html
http://ju.se/en/research/research-groups/computer-science-and-informatics/research-projects/ontology-based-software-test-case-generation-ostag.html
http://ju.se/en/research/research-groups/computer-science-and-informatics/research-projects/ontology-based-software-test-case-generation-ostag.html

OBJECTIVES

* Research objective

- Create a method for deriving test case data
(semi-)automatically using an ontology representing
the specification and domain for a software system

* Technical objective

* Develop a prototype of the tool that implements the
method and experiment with it

» Business objective

* Make the testing process more effective in terms of
resources, time, money, test coverage, as well as in
terms of providing additional help to inexperienced
testers

APPROACH

Software Requirement Specification
Other documents
Expertise (testers/developers)

Input data
Ontology
* Semantic models of application domain
* Ontologies and Inference rules Test
* Black-box testing €St Cases
SRS Evolution ’ Testing
* Evolution algorithms V * Automated generation
* Fitness Function « Reduced number of test cases
* White-box testing * Improved test results

JONKOPING UNIVERSITY
‘ School of Engineering

CURRENT RESULTS

« An ontology is developed for the SRS in the SAAB case
« Evaluated through SUS and the use in an application
« Refined in several iterations

» Inference rules are created to generate test cases
« Use the SAAB ontology
« Almost one-to-one correspondence to the existing test cases

« Two publications

* He Tan, Muhammad Ismail, Vladimir Tarasov, Anders Adlemo and Mats
Johansson. Development and Evaluation of a Software Requirements Ontology.
Accepted to 7th International Workshop on Software Knowledge - SKY 2016.

« Vladimir Tarasov, He Tan, Muhammad Ismail, Anders Adlemo and Mats
Johansson. Application of Inference Rules to a Software Requirements Ontology
to Generate Software Test Cases. Submitted to OWLED - ORE 2016 - 13th OWL
Experiences and Directions Workshop and 5th OWL Reasoner Evaluation
Workshop.

5 .' JONKOPING UNIVERSITY

School of Engine

PROCESS OF TEST CASE
GENERATION

OWL-to-Prolog | translation
Translation results

T

oWl
functional
syntax

System
Specification
Ontology

ﬂ/

Ontology in
Prolog Syntax

/ Prolog y
clauses

Test Case
Generation

Prolog clauses

plain text

Y

Inference Rules

Test Case

Description

JONKOPING UNIVERSITY
‘ School of Engineering

REQUIREMENTS

SPECIFICATION ONTOLOGY

* The ontology includes
* A meta model of the software requirements
* The domain knowledge of the application
« Each system requirements specifications

* The ontology contains
« 42 classes
« 34 object properties
13 datatype properties
« 147 instances in total

JONKOPING UNIVERSITY

THE META MODEL OF A
REQUIREMENT

hasRequirementParameter

\Concerns hasRequirementCondition
requiresAction ‘ /
Requirement]_
\[(\ hasResult

traceabilityFromTo

ONTOLOGY FRAGMENT: SRSRS4YY-431

(RequirementParameterJ

[Requirement_Condition] instanceOf

hasParameterValueRange

instar\1ce0f \

[CommunicationTypeJ

[RequirementParameterVaIueOutOfRange]

hasRequirementParameter

hasRequirementCondition hasRequirementType

. >| Requirementj
| DeactivateUART 4—requireAction{5R5R54W'431 l EEAECEE

expectedResult

takesAction requirementForService

instanceOf /
[CommunicationTypeConfigurationError)
[InitializationServicej

[Action] | insta/r’1ce0f

instanceOf

[Service_ResuIt_Type]

T : l
[Inltlallzatlon_SerwceJ subClassOf

9 JONKOPING UNIVERSITY
' School of Engineering

AN EXAMPLE OF A HEURISTIC
RULE: SRSRS4YY-431

IF the requirement is for a service and a UART controller is to be
deactivated

THEN add the call to the requirement’s service, calls to a transmission
service and reception service as well as a recovery call to the first

service.

tc procedure (Requirement, Procedure) :-
% get service instance for call #1
objectPropertyAssertion (requirementForService, Requirement, Service),
% check condition for calls #2-4
objectPropertyAssertion (requiresAction, Requirement, DeactivateUART),
objectPropertyAssertion (actsOn, DeactivateUART, UartController),
classAssertion (uart controller, UartController),
% get instances of the required services
classAssertion(transmission service, WriteService),
classAssertion (reception service, ReadService),

Procedure = [Service, WriteService, ReadService, recovery(Service)].

10 JONKOPING UNIVERSITY
. School of Engineering

ONTOLOGY PATHS USED BY THE INFERENCE
RULES TO GENERATE A TEST CASE

In|t|aI|zat|onSerV|ce J

instanceOf
reqwrementForSerwce /
{ UARTController-1 }

|n5tance()f |n5tanceOf 7‘
actsOn
{ WriteService J { ReadService J { SRSRS4YY-431 J—requwesAcnonA){ DeactivateUART J

hasQueue hasQueue
| . |

[TyFIFO J [RyFIFO }

expectsResult

{ RS4yyNotlinitialised } .
hasRequirementParameter

instanceOf {CommunicationTypeConﬁguration ErrorJ

instanceOf

RS4yyOk { CommunicationType }hasParameterValueList_

11 JONKOPING UNIVERSITY
‘ School of Engineering

DEMO

JONKOPING UNIVERSITY
. School of Engineering

EXPERIMENT

* 40 inference rules were used to generate the
18 test cases.

* The corresponding test cases have been
reproduced in plain English

» Almost one-to-one correspondence between
the texts in the generated test cases and the
texts provided by one of our industrial
partners, Saab

13 JONKOPING UNIVERSITY
. School of Engineering

FUTURE WORK

» Using FrameNet as a general lexicon to modell
complex requirements

» Express test case generation strategies in
terms of algorithms rather than inference rules

« Computing ontology coverage to check
requirements coverage

14 JONKOPING UNIVERSITY
. School of Engineering

