aximizing the Impact of ML Systems Through
Software Engineering Practices

[""'.,»-_:--/ o

~ 's-‘__ _‘/

Deployment, and Maintenance

LB
e) J Py
/ L | f \ / ! —
: \ / N (AL) - —~
/ NN ~
- \ / \ AN b e W
N e /S A e \ \ -
==~ | \ P b . ,
\ C N/ >

> - > N \ { |
= / P ._',r ', = v 0\ [/
M N S w~—a ¢ \ |
e 7 /AN

AL, |\ L
,, .‘ "‘*—»,_<1 | | | r /\‘ '
. W \KaﬂSt.a 1 O
L S AN

Bestoun S. Ahmed

Professor in Computer Science
Department of Mathematics and Computer Science
Karlstad University, Sweden

Phone: +46 54 700 1861

Room: 21D 413

bestoun@kau.se

mailto:bestoun@kau.se

About Me

e Bestoun S. Ahmed, Ph.D.
e Professor in Software Engineering
e 15 Years of Software Engineering and Al Research

e More information about me, please visit
www.bestoun.net

e Email: bestoun@kau.se
e Phone: +46-54 700 1861
e Room: 21D 413

e Office Address:

e Department of Mathematics and Computer Science,
 Faculty of Health, Science and Technology,

e Karlstad Univesity, Sweden

KARLSTAD UNIVERSITY
Bestoun S. Ahmed’ Ph.D. 2 Department of Computer Science \3

http://www.bestoun.net
mailto:bestoun@kau.se
https://www.kau.se/en/faculty-health-science-and-technology/about-faculty/departments-and-disciplines/department-2
https://www.kau.se/en/faculty-health-science-and-technology/about-faculty
https://www.kau.se/en

The Current Landscape of SE and Al

Software 1.0

string s1nP

1] : ” . ’ . : 'N)

* The “classical stack” of Software 1.0 is what we’re all g int 1Leng§_¢ém;_
familiar with. | double db ERp;
Z bool agall =

true,

* The program is written in languages such as Python,
C++, etc.

e |t consists of explicit instructions to the computer
written by a programmer.

e By writing each line of code, the programmer
identifies a specific point in program space with some
desirable behaviour.

e This process of an explicit description of problem
solving steps is what is used to be Software 1.0

Input data

5 \
/'

Computation —_—) Result
func foo(x): int
{ return x+1 Output
}
Code
Bestoun S. Ahmed, Ph.D. 4 SARLSTAD URIVERSHY

Department of Computer Science
Diagram source: https://karimfanous.substack.com/p/software-20-vs-software- | O?utm_source=url

Software 1.0

e QGreat for problems that are well defined, e.g.:

- TCP/IP Stack: layered stack of protocols to facilitate reliable data transfer
over the internet

- Computer Graphics: geometric shapes to 2D pixels on a screen

e Cannot deal properly with complex tasks, e.g., image recognition

Sobel

5 KARLSTAD UNIVERSITY p
Department of Computer Science \3

Bestoun S. Ahmed, Ph.D.

Source: https://www.lwtech.edu/

Top view of software development activities

* Decompose large problems into smaller, easier problems to solve

Product Product Design
Specification Reviews Documents
interact

Customers & Requirement Feedback from .

Stakeholders Engineers Schedules Previous Competitive
L_IIJ SO|lCIt produce Varsiona Information
o
> .
o REQUIREMENT _ Test Plans Customer Usability Data Look and Feel
w ELICITATION interact e
L PHASE Surveys Specifications
- Software Oh yeah,
(8] refer Specification .
2 refer Software don't forget
o Architecture the Software
?9' S Independent Code
z diare IMPLEMENTATION V&V Teams
o Engineers &
w Programmers PHASE \
% Software
5 ™ Design VALIDATION
S %% design PHASE
m \
w
74 develop analyze for develop
‘;t conformance
~ =
G
* Software. Test case execution Test

Implementation Cases

i\
Software
Release Product)

Figure Source: The Art of Software Testing (3 edition)

* A lot of hidden effort goes into a software product.

6 KARLSTAD UNIVERSITY
Department of Computer Science

Bestoun S. Ahmed, Ph.D.

Modern Software Engineering Activities

e Build a product

e Concerned about cost, performance, stability, schedule

e |dentify quality through customer satisfaction

e Scale the solution and detect errors, consider security, safety, fairness .. etc.

* Maintain and evolve the product over long period.

Functional
Suitability

Appropriateness

Accuracy
Compliance

Software Product
Quality
Performance Operability B Maintain- Transfer-
Reliability efficiency (Useability) Security Compatibility ability ability
Availability Time- Appropriateness- Confidentiality Replace- Modularity Portability
Fault tolerance behaviour recogniseability Integrity ability Reusability Adaptability
Recoverability Resource- Learnability Non-repudiation Coexistence Analyzability Installability
Compliance utilisation Ease-of-use Accountability Inter- Changeability Compliance
Compliance Helpfulness Authenticity operability Modification
Attractiveness Compliance Compliance stability
Technical- Testability
accessibility Compliance

Compliance

Software 2.0

o Software 2.0 is about finding programs through optimisation i.e. directed search using training
data as the guide.

o Software 2.0 can be written in much more abstract, human unfriendly language, such as the
weights of a neural network.

e No human is involved in writing this code because there are a lot of weights (typical networks might
have millions), and coding directly in weights is kind of hard.

e We used to create all the logic in our programs, but now because we're using gradients and deep

learning and automation, we can start tackling more complex tasks.

Labelled training data

\ N \
/ Computation ———p» Weights >< @

Output X2 N2

ML model Input layers Hidden layers Output layers

KARLSTAD UNIVERSITY
Bestoun S. Ahmed’ Ph.D. 8 Department of Computer Science

Bestoun S. Ahmed, Ph.D.

Al Development life cycle
Software ~ Software project

Maintenance

* Automatic code clearing
» Self-adaptive routines

Testing &
Integration

* Automated test routines

* Probabilistic error
prediciton
Automated code
integration

Implementation
in code

Big data based
analysis

Free creative
resources

Artificial

intelligence
in software
engineering

Autoencoding
Automatic debugging
Improved team
collaboration

planning

* Predict problems & risks
* by expert systems

Problem analysis

* Structured access to design
patterns

* Free creative potential
of human developers

Software Design

s

Source:Applications of Al in classical software engineering

9

KARLSTAD UNIVERSITY
Department of Computer Science

Moving Forward from Traditional ML Modelling

Training @ Iterative Model Development Process
@ @ ML model
Data+ 5
7 > ; Model+ 5
Evaluation 5 Hyperparametersi

‘Machine learning H Modern software !

development development Sl
S e o o e 2 Analysis Training
Software 2.0 | = | Software 1.0 % Audit
performance

Engineering

Data Ingestion |> Data Validation|> Feature |> Train Model P Validate Model | Push If Good |> Serve Model

KARLSTAD UNIVERSITY
Bestoun S. Ahmed’ Ph.D. 10 Department of Computer Science

Inline with SE Dimensions

Requirements Qualities and (Pipelines | Architecture

Constr.: Safety,
Privacy, Fairness [

[Design for scalability]

[Goals vs specifications,]

- a
measurement Models training

and deployment: ,
where and when [Model orchestration]

>

[Data collection]

[Risk, fault handling] model dependencies ...

[Data provenance, }
Process [Iteration, planning]

[Ul. HCI, experiences] [Teams, roles] Design,

modularity,
[Technical debt] reuse

Tele- " Infrastr.
metry] churn

[Data quality]

[Mo ERtE] [Ethics] [Infrastructure at scale }

Sensitivity Testing in production — [ML implementation]
analysis (A/B testing infrastr.) [E)evOps] and tradeoffs

[Testing infrastructure] [Fairness/

[Automated deployment]
and QA automation privacy]

[Monitoring]

Quality Assurance Implementation and Operation

Christian Kastner and Eunsuk Kang. 2020. Teaching software engineering for Al-enabled systems(ICSE-SEET ’20).

ML Development Lifecycle

Classical iterative approach

Model +
Hyperparameters + Data

Algorithm/Model

Hyperparameters \‘ ML Model

—

Data /

Error analysis Training

Audit performance

Business

ML Problem
Framing

Machine Learning
Lifecycle

Deployment

Model
Development

Synergy with Software Eng.

2

REQUIREMENTS

The IT team gathers requirements from
business stakeholders and Subject Matter
Experts (SMEs.) The output of this phase in a
Waterfall project is usually a document that
lists these requirements, Agile methods, by
contrast, may produce a backlog of tasks to be
performed

4

SOFTWARE
DEVELOPMENT

This phase produces the software under
development. This could be in “sprints” (Agile),
or asingle block effort (Waterfall). The output
of this phase is testable, functional software.

6

DEPLOYMENT

The deployment phase is, ideally, a highly
automated phase. In high-maturity
enterprises, this phase is almost invisible;
software is deployed the instant it is ready.
Enterprises with lower maturity, or in some
highly regulated industries, the process
involves some manual approvals.

The output of this phase is the release to
Production of working software.

1

PLANNING

Planning focuses on the scope of the project.
The outputs of the planning phase include:
project plans, schedules, cost estimations,
and procurement requirements.

3

DESIGN AND
PROTOTYPING

Once requirements are understood, the
design process takes place. It makes use of
established patterns for application

z L

pment.
Architecture frameworks like TOGAF may be
used here. Outputs include: design
documents that list the patterns and
components selected for the project, code
produced by spikes, used as a starting point
for development

S5

TESTING

The testing phase of the SDLC is arguably one
of the most important. It is impossible to
deliver quality software without testing.
Methods for testing can include: code quality,
unit testing (functional tests), Integration
testing, Performance testing, Security testing.
The output of the testing phase is functional
software, ready for deployment to a
production environment.

7

OPERATIONS AND
MAINTENANCE

The operations and maintenance phase is the
"end of the beginning,". Though the SDLC
doesn't end here. Software must be monitored
constantly to ensure proper operation. Bugs
and defects discovered in Production must be
reported and responded to, which often feeds
work back into the process. Bug fixes may not
flow through the entire cycle, however, at least
an abbreviated process is necessary to ensure
that the fix does not intreduce other problems

10 KARLSTAD UNIVERSITY
Department of Computer Science

Bestoun S. Ahmed, Ph.D.

Figures source: https://raygun.com/ and https://docs.aws.amazon.com

https://raygun.com/
https://docs.aws.amazon.com

Why Software Engineering for Al

* Machine learning
Components are parts Of Data Verification Ma&hine Resource
ta Collection anagement
mUCh |al’ger SyStemS Data Coll

Serving

Configurati
guration ML Infrastructure

Code Analysis Tools

Monitoring

* Many existing SE practices
app|y direcﬂy but are Fealile Eiailer Process Management Tools
simply not used in the data
science field

* ML-enabled systems need to be engineered such that

- System is instrumented for runtime monitoring of ML components and
operational data

- Training-retraining cycle is shortened
- ML component integration is straightforward

e Other SE practices will have no be adapted to extended to deal with ML
components

KARLSTAD UNIVERSITY N e
Bestoun S. Ahmed’ Ph.D. 13 Department of Computer Science 1%5

Source: [D. Sculley et. al. NIPS 2015: Hidden Technical Debt in Machine Learning Systems]

Integrating ML as a Core Component in Complex Systems

e ML algorithm is just a smal e —
part of a bigger system

* There are several other challenges:

Managing and Processing

Lack of Modularity in Al Large Amounts of Data

— _

Dealing with Challenges

Absence of Clear
Specifications

Al System
Challenges Interacting with the Real

Setting Goals and Balancing World

Stakeholder Requirements Needs Handling Feedback Loops

Collaboration

Obtaini d Updati fecinli
System Goals amngaanta pdating Interdisciplinary Teams
Cost Management

Dealing with Concept Drift)
Operating Costs

Adapting to Changing Training Costs
Requirements

14 KARLSTAD UNIVERSITY
Department of Computer Science

Bestoun S. Ahmed, Ph.D.

Data Science and Software Engineering

Data Science Lifecycle

A Cumulative cost

1.Determine Progress 2. Identify and

Business objectives /‘——ﬂ resolve risks
Understanding

On-Premises vs Cloud
Transform, Binning Feature Database vs Files
RSeetine cncincering
i;‘:avT:‘igg:sF?:c:Tency
Igorithms, Ensembl
AgoP;ramsetEersT:nin; Model Modeling l?‘g““itb:.& R — . ; Operational
Model ma:eatgr:z;r:‘% flainine G ENCE Database vs Data Lake vs .. Review Requl;:::‘ents /\P“)totype 1) Prototype 2\ prototype
Small vs Medium vs Big Data
' . Concentof | reamiraments Detailed
Cross Validation Model Wrangling, Structured vs Unstructured operation Requirements design
Model Reporting Evaluation ST [IE Tl R/ Data Validation and Cleanup
A/B Testing CIeaning Visualization
Developmlent ;’T'Ii.zaﬁ.o"
plan falidation
Deployment Customer @
Acceptance Testplan | Verification
& Validation
Web Implementation
Services Scoring,
ntilgent Reriormance 4. Plan the Release
Applications monitoring, etc. next iteration 3. Development
and Test
Overfitting and
Underfitting
Model Interpretability and ML Model Quality
Explainability
Correctness Verification
ML-centric Challenges
Model Degradation
Test Generation for ML
Data Bias and Fairness
Al Challenges
Misleading Decision
Making
Data Quality and Cleaning
Data-centric Challenges Inconsistent Data Storage
Incomplete Data
Gathering Data Privacy Concerns
Identifying Anomality in
Data
KARLSTAD UNIVERSITY
Bestoun S. Ahmed, Ph.D. 15

Department of Computer Science

Image Source: (Microso Azure Team, "What is the Team Data Science Process?" Microso Documentation, Jan 2020)

Al = Data + Model

e Model-Centric Al: Model-Centric Al

- Emphasis on developing and TRAINING DATA MODEL

refining complex algorithms and

i R\
models. —) L @
- Focus on optimizing model T

performance and accuracy. &

Data is a fixed & static asset

- PriOritizeS the deSig N and Model iteration is the focus
arCh iteCtu re Of the mOdel - New model, architecture, loss function, optimizer, etc.

e Data-Centric Al: Data-Centric Al

TRAINING DATA

- Emphasis on acquiring and curating high- MODEL

quality data. ’ L
- Focus on data preprocessing, cleaning, O— D
and augmentation. ’
- Prioritizes data quality, diversity, and &
relevance. Data iteration is the focus f.f:ﬁf;r:;@i mgﬁggzgg:etures
Bestoun S. Ahmed, Ph.D. Data acquisition, cleaning, auditing, generation, etc. transformers)

nderschaar-lab.com/dc-check/what-is-data-centric-ai/ X

General Data-centric problems with ML

Data Quality Issues

e Types of data quality issues:
- Completeness: Missing or incomplete data.

- Consistency: Conflicting or duplicate data.To what extent the data are compatible with the previous
values or rules that apply to the data.

- Accuracy: Incorrect or outdated data. The level to which the data is correct, reliable, and certified.
- Timeliness: Delayed or stale data. For some tasks, the data might become irrelevant very quickly.

- Relevancy: The requirement for the data to be sufficient to achieve the business goals.

Underrepresented
Data

Missing
| Data

Imbalanced

Overlapped
Data

Quality
Data

€ accuracy, reliability

Machine %,j\a

Learning

Machine
Learning

5 <«
A »

~ %
~ =]
< L]
\a N

Inconsistent
Data

Redundant

Irrelevant

Data

KARLSTAD UNIVERSITY
Bestoun S. Ahmed’ Ph.D. 18 Department of Computer Science

Image source: https://towardsdatascience.com/data-quality-issues-that-kill-your-machine-learning-models-961591340b40

Bestoun S. Ahmed, Ph.D.

Data quality dimensions

Data Quality Dimensions

Completeness

Reliabi

uracy

Timeline

HOQuUEeNESS

Validity

IVERSITY

-4
‘omputer Science \3

100

80

60|

401

20

Stock Price

Numerical Data

OFF

Time Series Data

Data Types

Categorical Data Ordinal Data

50

W B
o o

N
o

Number of People

10

Red Blue Green 0 High School Bachelor's Master's PhD
Categories Education Level
Text Data Image Data
Text Data

Data Availability and Accessibility

 Data Silos: Data stored in isolated systems or departments can be difficult to access
and utilize for comprehensive analysis.

o Lack of Real-time Data

e Limited Access to External Data

Data Availability and Accessibility Over Time

101
0.8t
[}
S
()
-
_;," 0.6
=
»
%]
()
)
< 04 B
©
)
©
@)
0.2 =
— High Data Accessibility
Variable Data Accessibility
0.0 == Low Data Accessibility
2 4 6 8
Time

Bestoun S. Ahmed, Ph.D. 21

Data Scalability and Performance

* Handling Large Datasets: Challenges in processing and
analyzing large volumes of data efficiently.

e Scalability: Ensuring that data systems and architectures can
scale to accommodate growing data needs.

Data Scalability and Performance Comparison Data Scalability and Performance

EEl Scalable System
HE Non-Scalable System

=
o
T

0| | —
0.8

(O]

60 oSN e e c

() ©

n e 0.6

8 £

S &

E £

8 40 40_)‘ 0.4 -

g &

o
(N}

N
o
T

— Scalable System

0.0f == Non-Scalable System
0 Low Data Volume Medium Data Volume High Data Volume 2 4 6 8 10
Data Volume Scenarios Volume of Data
KARLSTAD UNIVERSITY
Bestoun S. Ahmed’ Ph.D. 22 Department of Computer Science \3

Data Integration and Interoperability

e Integrating Data from Various Sources: Challenges in combining data from different
sources and formats.

 Ensuring Data Interoperability: Making sure that different data systems and
software can work together seamlessly.

Data
interoperability
(Unified system)

Data source 2 Data integration and >
(SQL) transformation

KARLSTAD UNIVERSITY S
Bestoun S. Ahmed’ Ph.D. 23 Department of Computer Science \3

Data Labelling and Annotation

* Inaccurate Labels: Incorrectly labeled data can mislead machine
learning models.

* Lack of Expertise: Insufficient expertise in the domain can lead to
poor data labeling and annotation.

Data Labeling and Annotation Problems

1.0
® Consistent & Accurate Labels
® [nconsistent Labels (Class 0)
¢ ® [nconsistent Labels (Class 1)
0sl ® Inaccurate Labels
' Ambiguous Cases
] Inconsi.stent Labels
°
0.6 (Different Classes)
N |
@ * J
3 ® ®
5 %
“ 04t
. L °
°
Py o
02} Consistent & Accuratg
o® °
Inaccurate Labels
O'%.O 0.2 0.4 0.6 0.8 1.0
Feature 1
KARLSTAD IVERSITY
Bestoun S. Ahmed, Ph.D. 24 S UNIVERS

Department of Computer Science %

Bias and Fairness

 Data Bias: Biased data can lead to biased machine learning
models, impacting fairness and objectivity.

Confusion Matrix - Group 1 Confusion Matrix - Group 2

True Labels
True Labels

Predicted Labels Predicted Labels

KARLSTAD UNIVERSITY
Bestoun S. Ahmed’ Ph.D. 25 Department of Computer Science \3

Data drift issues

Data Drift in Time Series Data

3.01 Original Data %
——- Drifted Data /
25k Region of Data Drift
/// X \\
/ \
2.0 2 N !
/ \ /
/ \ /
/ \ /
i I/ \\ /
1.5 / \ //
/ \ /
/ \ /

o Lo~ / \\ /
2 1.0y . / | “ i
>) // o PR

0.5t / \\\) 7

/ \ ’
/ S~-7
0.0 f
—05}
—-1.0t
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time
Bestoun S. Ahmed. Ph.D 26 KARLSTAD UNIVERSITY

Department of Computer Science

General Model-centric problems

Overfitting and Underfitting

* Overfitting: The model performs well on the training data but fails to generalize to unseen data. This
often happens when the model is too complex.

* Underfitting: The model is too simple to capture the underlying patterns in the data, resulting in poor
performance on both training and testing data.

Overfitting and Underfitting Example

O -
-5t
>_
—10}
—15}
X X —=—= Linear Model (Underfitting)
—— Polynomial Model (Good Fit)
----- High-Degree Polynomial Model (Overfitting)
20+ X x Data
-3 -2 -1 0 1 2 3
X
Bestoun S. Ahmed, Ph.D. 28 KARLSTAD UNIVERSITY

Department of Computer Science

Lack of Generalization

e The model is not able to perform well across diverse scenarios
and datasets, limiting its applicability.

Lack of Generalization Example

—— Model Predictions

°f X Training Data

X Unseen Data (Different Distribution)

—20¢F
X
_40 |
> —60r
—-80F
—100 ¢
—-120¢F
-2 0 2 4 §) 8
X
Bestoun S. Ahmed, Ph.D. 29 KARLSTAD UNIVERSITY

Department of Computer Science %

Model drift (concept drift)

* Model Drift: The model's performance may degrade over time as
the underlying data distribution changes, a phenomenon known
as model drift or concept drift.

Model Drift Example

—— |nitial Model Predictions X
X Initial Training Data x X X " %
201 % New Data (With Drift) % X X % X)):
10
>_
0 =
—10F}
_20 »
-3 -2 -1 0 1 2 3
X
KARLSTAD UNIVERSITY
Bestoun S. Ahmed, Ph.D. 30

Department of Computer Science %

Model Robustness

* Model robustness refers to the ability of an Al model to produce accurate
and reliable results even in the presence of unexpected or adversarial inputs
or conditions.

* Adversarial examples are inputs that are intentionally designed to mislead or
confuse an Al model, leading it to produce incorrect outputs.

* Techniques for model robustness:

- Adversarial training: a technique that involves training an Al model on
adversarial examples to help it learn to better recognize and classify them.

- Defensive distillation: a technique that involves training an Al model to be
resistant to adversarial attacks by adding noise to the model's output
during training.

- Input preprocessing: a technique that involves preprocessing inputs to an
Al model to remove or reduce the impact of potential adversarial inputs,
such as by blurring or smoothing images.

31 KARLSTAD UNIVERSITY p
Department of Computer Science \3

Bestoun S. Ahmed, Ph.D.

Robustness example

Clean Data, Noisy Data, and Regression Lines

25T :
- Regression (Clean Data) x
- Regression (Noisy Data)
% Clean Data " « e
x Noisy Data % Xx
X x X
20 B 0
X
X -2
X
x X X
X
X > ¢
15} X¢ X X
X
X 9 X X X
> x X xxx X
xX R X X
10} % s X
xx X X
- X
X X P ol % x
X X X % %%
X -~y X
5F X e ,¢/
X -~
X Ot? N X
X - x
A X X
>
-l
Of X X
1 1 1 1 1 1
0 2 4 6 8 10
X
KARLSTAD IVERSITY
Bestoun S. Ahmed, Ph.D. 32 S UNIVERS

Department of Computer Science

MIL jrenaeSisshn FE s peaive

On the ML life cycles

* Three different lifecycles
- ML project life cycle
- ML application life cycle
- ML model life cycle

* An ML Model Represents the
Fundamental Estimator

- Eg. When it serves as a
predictive tool generating
daily sales forecasts.

* The ML Application, on the other
hand, encompasses of
supplementary components and

functionalities, alongside its core
ML models.

Bestoun S. Ahmed, Ph.D.

1. Problem

2. Analysis

1. Problem

34

ML project life cycle

v

2. Analysis

ML ML
model A model B

ML application

KARLSTAD UNIVERSITY p
Department of Computer Science \3

3. Development

3. Development

ML App

* Database, for storing extra features, ML Application
and logging model outputs walgocelesming oo
. . Predictiqns @ QiS:
o GUI: for admln users, to Conflgure Evaluation 0 (o) % AI/MachineLearningA/DeepLearningModeIs

- -
k]

‘Input data

and troubleshoot the app.

User/
GUI

* API, through which the app can
communicate with the outside world @
In a consistent and secure manner,

Database

* |n best practice the ML model is not locked to the ML application so that each can
go its own way, which is the philosophy of the so-called "microservice architecture”

App App
v1.1.0 v2.1.0

Time

Model Model Model
vi V2 V3

Bestoun S. Ahmed, Ph.D. 35

App Building Process

 The app build process follows the
classical DevOps software build approach.

App build pipeline

* |t initiates by retrieving our scripts from a —
centralized code repository, which serves ’
as our code management hub. |

!

e Automated transformations are then

applied to prepare the app for Code quality assessment
deployment. |

X Package
* The resulting package is stored
securely in a dedicated repository.

Testing methods

KARLSTAD UNIVERSITY
Bestoun S. Ahmed’ Ph.D. 36 Department of Computer Science \3

ML Build Process

* The model build pipeline, also known as the model training
pipeline is different.

Feature
extraction

- Model training

- Model evaluation
and validation

Record
Trained model —+> metadata
Metadata store

Model build pipeline

o Central code repo

Model registry

Model serving UNIVERSITY

f Computer Science \%

Bestoun S. Ahmed, Ph.D.

Versioning Training Data

* Major versioning:
- Indicates significant changes in either the data or the model.

- Substantial alterations to the dataset, such as adding or removing a significant portion of
data, or fundamental changes to the model architecture or training process.

* Minor versioning:
- Signifies smaller, incremental changes to the data or model.

- Often involve smaller modifications like adding new features, optimizing data preprocessing
steps, or fine-tuning model hyperparameters.

Tracking of changes made
to data and models during
the course of

Analyzing the experiments.

performance of different
model versions against
various data versions.

Ability to reproduce

Change Tracking previous experiments

Comparative Analysis precisely.
Minor Versioning Reproducibility
Major and minor version Documentation
labels serve as a form of
documentation.
KARLSTAD UNIVERSITY

Bestoun S. Ahmed, Ph.D.

Versioning ML Models

e | ke data, ML models also versioned to Model 1.0
ensure reproducbility and enabling
rollbacks.
. . Version 1.1 Version 1.2 Version 1.3
e Usually matches training data version but '
not always
e Example:

1. Model V 1.0 is our initial model (Random Forest)

2. Model V 1.1 is the same model fine-tuned on Data V 1.1
3. Model V 2.0 is now a XGBoost Model fine-tuned Data V 1.2
4. Model V 2.1 is the XGBoost model fine-tuned on Data V 2.0

KARLSTAD UNIVERSITY p
Department of Computer Science \3

Bestoun S. Ahmed, Ph.D. 39

MLOps: Bridging the Gap between ML and
Operations

Machine Learning Operations

e MLOps: is the set of practices to design, deploy and maintain machine learning in production continuously, reliably, and
efficiently.

e Focus on 'In Production': MLOps centers around the deployment and ongoing management of ML models in real-world,
production environments.

* Full ML Lifecycle: It encompasses the entire ML lifecycle, including design, development, deployment, and maintenance in

production.
Problem definition Exploratory Implementa- Feature Experiment Model training Setup CI/CD Depl del Monitor-
& requirements data analysis tion design engineering design & evaluation pipeline eploy mode ing
Design Development Deployment
* Origins in DevOps: MLOps shares its roots with DevOps, which
stands for Development Operations a set of practices and tools used
in software development to ensure continuous, reliable, and efficient
software development.
DEV OPS

* DevOps Principles: DevOps principles, such as accelerating
development processes and fostering collaboration between
development and operations teams, are applied to MLOps to
KARLSTAD UNIVERSITY ”
Bestoun S. Ahmed’ Ph.D. 41 Department of Computer Science @@

streamline the deployment and maintenance of ML models.

431183

MLOps Lifecycle

Development Deployment

e ML Lifecycle in MLOps:
- Design: Project conceptualization and goal-setting.
- Development: Model building, training, and evaluation.
- Deployment: Model goes live in production.

e Phases often overlap.

 Continuous evaluation with stakeholders is key.

KARLSTAD UNIVERSITY p
Department of Computer Science \3

Bestoun S. Ahmed, Ph.D. 42

Building for Scale: Automation First

* To build scalable ML systems, our focus is on streamlining processes, embracing best
practices, and automation:

- Automation-First Approach: Automation is our foundation to prevent hidden technical debt
and unlock scalability. It allows us to maintain and update ML systems efficiently.

- MLOps for High-Value Solutions: MLOps is our key to delivering valuable ML solutions that
receive frequent and reliable updates. It ensures our models perform optimally in production.

- Transparent and Reproducible Processes: We prioritize transparency and reproducibility
through established methodologies like CRISP-DM and Microsoft's TDSP. These
frameworks guarantee quality and reliability in our ML systems.

ﬁl ok

Design Development Deployment

Automation+ Process streamlining+ Best practices

KARLSTAD UNIVERSITY S
Bestoun S. Ahmed’ Ph.D. 43 Department of Computer Science \3

Towards Robust ML Systems in Production

Robust performance is an essential requirement to build trustworthy Al systems
(according to EU guidelines)

DataOps: end-to-end data processing operations in production

ModelOps: the set of operations that are performed on the learning task of the
ML model

Automation: the engine that drives and coordinates the overall operations

MLOps
DataOps ModelOps
() ()
Data Cleaning AutoML
Drift Detection Concept Drift
Anomaly Detection Generalizability
f”
T A T
Automation

A4 KARLSTAD UNIVERSITY p
Department of Computer Science \3

Bestoun S. Ahmed, Ph.D.

Fully Automated MLOps Architecture

e A fully automated MLOps solution has CI/CD capabilities as well as two

more capabilities: continuous monitoring and continuous training.

N . Orchestrated _ [P,
experiment

—

Bestoun

B Pipeline (S)
~—— Staging / Preproduction / Production deployment =
Feature S
store ML metadata store S
— "~ Trained O

. — M Model =

- Model |)

~ - registry <

Packages |I
Sou rce

repository ~ Continuous Integration

Experimentation / Development

I
Model
val

o - e e e - - e e e S e e e e —

Automated pi

Model
serving

Prediction
service

Data Model

training

Model

Data val
eval

]

https://cloud.

google.com/architecture/mlops-continuous-aelivery-and-automation-pipelines-in-machine-learning

U
S O\
»
o
>
=]
L]
~N

Modern ML Systems in Production

Continuous Testing and validating code, components, data, and
— . >
Integration (ClI) models
Continuous Delivery Not only deploy a single service, but automatically
— > .
(CD) deploy another service.
Modern ML
Systems . w . . .
y Continuous Training Automatically retrain models, when automatically detect
— > .
(CT) changes and performance degradation
Continuous Catching errors in production systems, and monitoring
— o > .
Monitoring (CM) production data.

> Scoping > Data Modeling > Deployment >
|
? * I New data
_________________________________ _
v y :
Experimentation/ Cont!nyous e Cont.lnuc.>us
Training Monitoring

Development
ML Engineering/DevOps

ML Engineering/Data ML Engineering/DevOps
Engineer

Data Scientist/ML
Engineering Scientist Engineer
UNIVERSITY
f Computer Science

Bestoun S. Ahmed, Ph.D.

Continuous Robustness

 Continuous ML system (MLOps): DataOps+ML ModelOps+automation
* Necessary shift from accuracy-driven to robust-driven systems
* Robust ML system in production: Maintaining high performance of

ML in real-life deployment. From accuracy-driven to robust-driven
Systems

Al Application

6’5& Collection MLOpS Action \

DataOps ModelOps
(0 . N R g
Sensor Data Cleaning AutoML . Actuator
: Drift Detection Concept Drift g A
7 Anomaly Detection Generalizability .
éHis‘coricad dlafcaué : R
| 1 | 7 f J | Vu‘l.t“ :
T Automation T ‘

MLOPs Dimensions

MLOps Component

MLOPS

[)(Automation %

DataOps

ModelOps

Operation

Continuous validation

Continuous versioning

Continuous monitoring

Continuous update

Data cleaning

Anomaly detection

Distribution shift

Data scarcity

Hyperparameter tuning

Concept drift

Generalizability

&
7
\.
7
&
7
\.
7
&
7
\.
7
\.
e
&

Label noise

Sub-tasks

Validation splits, performance metric

Iteration definition, storing meta-information

Defining benchmark, triggering alarms

Listening to alarms, retraining mechanism

Data quality dimensions, correction methods

Detection method, anomaly handling

Similarity function, drift magnitude threshold

Data adequacy level, augmentation method

Search method, finding optimal parameters

Change detection method, drift magnitude

Overfitting and underfitting analysis

Noisy data identification and handling

Bestoun S. Ahmed, Ph.D.

48

KARLSTAD UNIVERSITY
Department of Computer Science

Deploying Al at Scale

e Continuity and automation .. Towards continuous everything

e Several Challenges:

- Data Quality and Quantity: Large-scale deployment requires a huge amount of high-quality, labeled
data

- Model Performance: The accuracy of Al models can degrade at scale

- Model Explainability and Trust: The deployment of Al systems at scale raises important ethical and
legal concerns

- Integration with existing systems: can be challenging due to compatibility and technical difficulties.

- Maintenance and Updating: Al models need to be maintained and updated regularly to ensure that
they continue to perform well.

Al Application

/Data Collection MLOps Acion

i DataOps ModelOps Q 5
(") 4 R

Sensor Data Cleaning AutoML Actuator
: Drift Detection Concept Drift :
: | Anomaly Detection Generalizability
gHistorical datag : : : xrs SUPEN
: : L :) L :) ; Visualisation :
* Q) ‘ N
Automation ‘

Bestoun S. Ahmed,

MLOps Levels in Production and Service

MLOps Process’ Maturity

* The level of automation of ML pipelines determines the maturity of the
MLOps process

* As maturity increases, the available velocity for the training and deployment
of new models also increases

 Goal is to automate training and deployment of ML models into the core
software system, and provide monitoring

—» MLOps level O > Manual process
MLOps Levels > MLOps level | > ML pipeline automation
—» MLOps level 2 > Automation CI/CD pipeline

KARLSTAD UNIVERSITY
Bestoun S. Ahmed’ Ph.D. o1 Department of Computer Science \3

Customization With the Current MLOPs Tools

e Summary of the built-in features of MLOps tools

Operation

MLOps tool

AWS Azure Vertex Al MLFlow TFX

Automation

Continuous validation
Continuous versioning
Continuous monitoring
Continuous update

DataOps

Data cleaning
Anomaly detection
Distribution shift

Data augmentation

AN YN NN

ModelOps

Hyperparameter tuning
Concept drift
Generalizability

Label noise

NN NN E N NENEN
NN NN ENENENEN

SSEEENENEEENENENENENENEN
NN EEENENENENENENEN

&

MLOps tools may not offer enough customization options to meet
the unique needs and requirements of different organizations and

uUsSe Cases.

Bestoun S. Ahmed, Ph.D.

59 KARLSTAD UNIVERSITY p
Department of Computer Science \3

Our Current Progress and Future Approaches

Data Drift and Model Degradation

2019-01

Degradation point

2019-02

ol
A
.

Predictive

2019-03
performance

2019-04

2019-05

2019-06

2019-07

2019-08

) 2019-09

2019-10

Deployment

Training and learning

-

Time . .
Drift Time S

1 2019-12
Data stream Em Em Em Em Em Em- Em Em Em 25 0 » 50 7
vwwWw www wvww wvww wvww \MNI ww ww www
]
Dy "

Di5 Diyg Di3 Do Dy Diy1 Digo D¢y s

: nnnnnnnnn
Drft: 1 uasaenneg -

150

[Training data]

[Serving data]

A new concept occurs within a short tme
1 01 Q00 BnRNenEeenEmd S L

v

£
oo | | | [N (| NN | DN =

[Baseline stats] [Schema } [

Stats]

A new concept gradually replaces an old one over 2 penod of time

i ;—DUUUGUUDD,B'“"BUUUUDDDUDDDDD

An old concept incrementally changes to a new concept over 2 period of time

T T
: T
e[1[11111 L]

Besto An old concept ma\ reoccur after some time

i

Image source: https://arxiv.org/pdf/2004.05785.pdf

Dealing With the Problems in MLOps and DataOps

e Building customisable micro services to deal with the custom data and ML problems

O Vacuum Pump Pressure Prediction ML Model Training Service

Persistent Storage
Jf—) Data Augmentation —>»{ ML Model Training —>» ML Model Testing

API Layer
A ‘
Automated
_ Deployment
Cloud or Offline

Microservices on Edge Node

v

Delivery and Vacuum Pump
Collection Services Pressure Prediction

f«

—> Action Service

Y
ESR Vacuum Pump Actuator / Display
Pressure Sensor Output
Bestoun S. Ahmed, Ph.I Real-time or Online "ERSITY

nputer Science

End-to-End Approach

O Deployment

User

(Management) . !

A 4 :

Services

ML Model Data Visualization ; i

Development !)y :

A ' :
Persistent Storage ! H
° Analvtics Data Quality C%j !

Y Assessment ' PY E

) 4 Source Code
Classification Quality Assurance ; '

API Layer < > ; Runtime H

' Library

A A - I~ :
Testing Data Validation : DockerlFile

Drift Adaptation ML Model Retraining i ??DTDTDT (> h

Cloud or Offline

Real-time or Online

Edge Node
Microservices for UCs
Data Quality Metrics Electricity UC Electroslag Remelting UC _
)
Peak Usage Network <
Delivery & NaN/Missing Values Detection Air Flow PredictionJ t oor
Collection Services 9 R ———— Optimization
(3\
Demand Response e Action Services
Application Data ; it ystem
> Anomaly Detection J Pressure Prediction Optimization
I N Cloud Actions
: Load Forecasting :
Monitoring Data ' : '
E E , i Config & Monitor
A ' ' ' :
() Platf
. . I I atform
[Drift Detection ’ Classification ‘ Classification J ‘ Optimization ’
- J
» Software-defined Time-Sensitive Network (SD-TSN) <
£ application data i LLSTAD UNIVERSITY

Bestoun S. Ahmec # % |.‘ @ irtment of Computer Science

Data Generation Data Sensing & Actuator

End to End Approach

Sensor Real-world application Configuration Stakeholder

é)\ Application/
_-!] Industry

Dashboard
Testbed/KAU *.
rE— R [e
, —— ; Edge node ; (e
Robustness to data drift Robustness to concept drift
Robustness to data scarcity‘ E?T\\} ' Generalizability | E%%
| B J ; \ J
| , d 2’ hEEb a
Raw data i - - -
Robustness to anomalies | | Qualtydata Optimizedmodel | | | Robustness fo fabelnoise ML model
DataOps P P Mode|0ps

Storage

[Continuous validation][Continuous monitoring]

[Continuous versioning][Continuous update]

Automation management

Bestot -.. Cloud service -

Bestoun S. Ahmed, Ph.D. 58 KARLSTAD UNIVERSITY

Self-Adaptive Drift Handling

Machine learning software to predict the > Ram

- . _ Stub
minimum pressure value Of d pumplng event
Electrode

The minimum pressure value is predicted
every 30 seconds for up to 3 minutes 7 Power

Suppl
O upply

Slag Pool

Evaluate: Predicted value < pressure
threShOId Metal Pool

Benefit: Early identification of invalid
pumping events

Industrial process scalability: Introducing a new furnace to the
industry

Non-functional requirement: Adaptability

Fast integration in the predictive system

Department of Computer Science %

Bes

Drift Handling Approach for Self-Adaptive ML
Software in Scalable Industrial Processes

Collect —> Adapt —> Deploy —> Monitor —> Decision

Covariate shift adaptation: importance weighting, Kernel Mean Matching

(KMM)

ML model: Random Forests(RF) and XGBoost

Evaluation metric: mean absolute percentage error (MAPE)

G
N —

Furnace A

Furnace A :
Pressure
Records
Furnace B
Industrial Data
process acquisition

Dataset

Data
storage

8

S |

Importance
Weighting

ML software

adaptation

ML Model

ML software
deployment

Results

Monitoring and Industry-based

observability actionj

Data Quality Scoring

e ML approach

- Score n data points using the pipeline approach
- Train ML regression on the training datasets of size n
- Predict the score of the testing dataset of size |

e DQSOps: Continuous Data Quality Scoring Framework for Data-Driven Applications

Ground-truth DQ Predicted DQ
score repository score repository

Retrain
signal

oo »C; - —
Predicted DQ] T
> | score f==|====1

Configuration file

1
1
1
1
1
— 1
—_— [
1 1
1 1
. o . [ML model I
Data windows Test termination point e !
. 1
\ Mutant simulator ! :
I N DQ '
1 : ! > ' 1
W1 [Wn.-. W,B Wﬂ+1...Wﬁ+n...W2ﬂ 2ﬁ+1... I E: E I
1 : : 1
» Time RS < DQ2 R AU
<«——Chunk of size f——> \ / : i s ¢
C - 9 | Pl 2
Test initiation points = Method ‘Lo > DQ3 Ground-truth Performgnce :
ﬁ activator P DQ score evaluation |:
A o g :
Data source Data window S ereeeeereseeennnoyeSt Oracle 1
|
|
YRS DQn

Data quality dlmensmns

Bestoun S. Ahmed, Ph.D. é Configuration file

Mutation Testing and Data Quality Scoring

 Mutation testing: is a software testing technique that involves
introducing small, deliberate changes (mutations) into the source code
and testing the program to see if it detects and fails the mutations.

Original decision boundary .
\ ,— Mutant decision boundary 2
\ \ /

\

\ \

1

] \

1] \

e Some attempts available in the
literature by using new data points
iIn the decision boundary.

N

e QOur approach is to look at the data Mutant decision boundary 1 —

quality dimensions and play with the

data: Streaming data (GT): @ @ @ @ @ @

\L Data point under

e Intrinsic DQ: How pure is the data? DR T e
 Contextual DQ: How useful is the IO

data for business applications? Replaced with

estimated value

Bestoun S. Ahmed, Ph.D.

Reference: L. Ma et al, "DeepMutation: Mutation Testing of Deep Learning Systems," 2018 |EEE 29th International Symposium on Software Reliability Engineering (ISSRE), Memphis, TN, USA, 2018, pp:

Continuous Robustness Testing in MLOPs

-——

@@@@@@’

Long-term storage
data management

A

@

Training data QA

ML software
modeling + training/
retraining

ML software QA

—--~ % —-.~

N

Automated
deployment

\

Software update
(new version)

AN

Z g
-0
—y VUOUOY —, — > N — P> &Ly
Industrial l1oT Temporary storage ML software Action
sensor (Input) data management Runtime data QA task (Output)
O ML model development and automated deployment O Realtime task and action
. : Robustness testing test data
Scenario 1 Scenarl_cr) 2) y IScengr|o|3 @ @ @ @ @ @ ;EST ?
(Feasibility Test) (Grounq rut (Volume =nc osed zg—
Testing) Testing) o=£
\ ML robustness
test oracle
|
Oracle 1 Oracle 2 Oracle 3 ML software
(new version) Response
variables
Y
@ Predictor
Main Oracle variables
QA dimention Binary classiier
parent class (train)
KARLSTAD UNIVERSITY

Bestoun S. Ahmed, Ph.D.

62

Department of Computer Science

Bestoun S.

Data Augmentation for Limited Data

Continues creation of da

maximum likelihood

]

]

ESR Pressure
Data

Initial Pressure
and Pump-down
Time

faset

5555 Generated P,y and
~8e Pump-down Time

_o Generated Sparse
o Representation

g

Augmented

Samples

Pumping speed

0.02

Pumping Speed
(Dictionary)

Pressure (mbar)

Pressure (mbar)

Time (s)

600
Time (s)

Using Data Augmentation for Robustness Testing

50 +
o -
[}
17}
o
o
Q
7]
o
o
[0}
°
©
L 50
o
o
[J
100 1 . ® Observations
o Perfect prediction
1 1 1 1]
10 15 20 25 30
True response
18 -
® Observations
® Perfect prediction
17 - L P
o []
L J
16 o o ®
° > ° % g ®
. ® ° e YT° ' d
L hd o vd ® o L 3
15 ~. .. pe Y . :
2 " L J :. o b ®
S o o ®° X 4 g
- 'y > 40 X
o ° ‘. g LI b
14 D' ° e
3 2.2 ¢ B o o o
ks o™ o’ o ° ®
kS * co® ° .
o ° o o :
13 | °o® ° s ° b hd
° ®e o.
° ® o ® °
o"“.. e o
) ® d
12 - .".' S L] ? .
®
° gy L) °
.‘. e © ¢ e
4 [] .. o
' ° (]
11 o0 o0 o
® ©
® o
e o
e 3
10] 1 1 1 1 1 1 1 1 1
BeSt(10 12 14 16 18 20 22 24 26 28 30

True response

(Sparse Representation)

64

Extract Ds
(Dictionary)

BH

Generate W

Ground Truth

Extract Poand T
Distributions

New Pgand T

Augmented Data
= Poe_TDSlp

KARLSTAD UNIVERSITY
Department of Computer Science

Anomaly Detection in Customer Data

* Anomaly detection during data evolution

o) =
Oso
050 EHEHE
® =] L=
Easy to detect anomalies Data errors treated Update data schema
same as code bugs
////4' *
25— Anomaly =
? . | / \ ‘ ﬁ J { = o
8 1 1 | T 4
i 1117
i | 1] " | L L |
i \ J \ L fl | u N d'.'i'_ ! ‘2 i Ul 'a‘l u Y ‘.ﬂl W"‘n;‘.'\t,"l' WL B
JM M 1 '”‘J “f n1 I W\M ‘M" \v‘\ M W | 'h““ LB R R
Bestoun | |

Source: Machine Learning Engineering for Production (MLOps), https://www.deeplearning.ai/program/machine-learning-engineering-for-production-mlops/

More Problems to Investigate

* (Continuous creation and labelling of the dataset.

Labels from

Features from > S > Join results with
inference requests gzglltc(zlr(l):% inference requests

.

Similar to reinforcement learning
rewards

e Testing for model degradation and continuous mitigation in MLOps

\
On-Demand . Manually re-train the model
J
. - . \
Oh S dule « New Iabelleq datais available at a daily, weekly or
monthly basis
J
. e \
Availability of New . New dataavailable on ad-hoc basis, when it is
Training Data collected and available in source database
J

Bestoun S. Ahmed, Ph.D. 06

Source: Machine Learning Engineering for Production (MLOps), https://www.deeplearning.ai/program/machine-learning-engineering-for-production-mlops/

Data and Model Versioning and Preservation

 Experiment tracking to compare results and how to use for testing

@® Name Tags acc Sweep optimizer epoch batch_size n_train n_valid n_conv_lay loss GPU
® batch 64 4 GPU 4GPU b_64_« 0.4305 - rmsprop 49 64 5000 800 1 1.632 -
® @ batch 64 (V2, 5K train 2GPU b_64_« 0.4343 - rmsprop 49 64 5000 800 d 1.63 -
® 50K examples (b 64) 0.4042 - rmsprop 49 64 50000 = 8000 1 76 -
@® @ batch 324 GPU 4GPU b_32 ¢ 0.4032 - rmsprop 49 32 5000 800 1 1.714 -
® @ batch641GPU 1GPU GCP 0.4465 - rmsprop 49 64 5000 800 5 1.615 1
® batch 128 (5K train) 2GPU b_128 0.4181 - rmsprop 49 128 5000 800 1 1.658 -
® batch 256 4 GPU 4GPU keras 0.3882 - rmsprop 49 256 5000 800 1 1.751 -

Code (/)

o— D
Data F&- p—- | | Model version X
e]

Config

Bestoun

Source: Machine Learning Engineering for Production (MLOps), https://www.deeplearning.ai/program/machine-learning-engineering-for-production-mlops/

Testing in an MLOps system is different

e Testing ML applications is, inherently more complex than traditional systems.

* |In addition to traditional software testing:
- Data tests
- Model tests
- Pipeline tests

Data

Data Tests Skew Tests N
Monitoring

| [

ML Infrastructure Model Prediction
Tests Tests Monitoring
Running — Model) Running
Mo = System — a Training = System
: : Integration System
Tests Monitoring
Traditional System Testing and Monitoring ML-Based System Testing and Monitoring
KARLSTAD UNIVERSITY : 2
Bestoun S. Ahmed’ Ph.D. 68 Department of Computer Science %%5

https://research.google/pubs/pub46555/

Model Registry? Experimentation

* The model registry plays a central role in managing the lifecycle of ML models. It serves two primary functions:

- Centralized Storage: The model reqgistry acts as a centralized repository for storing models and all their
associated artifacts such as the trained model files, metadata, configurations, and any other resources
required for deployment.

- Collaborative Lifecycle Management: Beyond storage, the model registry also facilitates collaborative
management of the model's lifecycle. It enables teams to track the progression of models from
development to deployment and beyond. This involves versioning, documentation, and tracking changes
made to the model.

* |In the experimentation, we can select the model with the best performance.

Experiment Metadata
Tracking Store
Orchestrated
Experiments ¢—

Production Archive

Development The Model Registry

Bestoun S. Ahmed, Ph.D. 69

A/B testing

* There are two models, A and B, running in
parallel.

Prediction Service

A =]
* A load balancer directs client requests to these

m Od e | S. Performance Load
monitoring Balancer

e Continuous performance monitoring helps the
load balancer adjust request distribution
between the models.

Prediction Requests

* The aim is to route most requests to the better- *
performing model, leaving the other for Prediction Service

validation.
B

* By automatically shifting requests to the better-

performing model over time, an A/B testing — o
deployment strategy allows the deployment to

automatically adjust and use the best-

performing model, ensuring the highest quality

Bestoun S. Ahmed, Ph.D. 70

Shadow Deployment

A new model runs alongside the production model.

e Requests are divided between them, but only the live model provides predictions to
clients.

e Both models' outputs are compared and monitored for performance differences.

e |f the shadow model outperforms the live one, it can replace it as the new production
model.

Prediction Service

Shadow
Model

v

Performance
monitoring
Prediction Requests
Bestoun S. Ahmed, Ph.D. i KARLSTAD UNIVERSITY

Department of Computer Science %

Load
Balancer

Blue/Green Deployment

* The "blue-green" deployment strategy involves transitioning from a model running in
production in a "blue" environment to replacing it with an updated model in a "green”
environment.

e This transition occurs gradually, following specified criteria, as prediction requests switch
from the blue to the green environment.

* |f the system functions without problems, most traffic eventually shifts to the green
environment, until finally, all traffic is handled by the updated system in the green
environment.

Prediction Service Prediction Service
< Blue environment Green environment < Blue environment Green environment
SE i 3£ i
£g Live Updated 22 £g Live Updated £
[} Model Model 5o [} Model Model 59
- () - (]
= =
@ [
R — Traffic lllllllllllllllllllll Traffic
Switch Start switch traffic to green environment Switch witch traffic to green environment
with latest model updates with latest model updates
Prediction Requests Prediction Requests
72 KARLSTAD UNIVERSITY
Bestoun S. Ahmed, Ph.D.

Department of Computer Science

Model Registry? Model Decommission

* Finally, the model that was in operation before the registration of
the newly deployed model will be decommissioned and archived
in the model registry.

Downstream
,| Experiment Metadata Services

Tracking Store
»
Model
g4 Serving
The Model Registry \

- i
CI/CD/CT/CM

Orchestrated

Experiments

—

Production Archive

Development

~—_ —

KARLSTAD UNIVERSITY p
Department of Computer Science \3

Bestoun S. Ahmed, Ph.D. 73

Future Research Directions and Challenges

Ensure robustness and
generalization

Streamline MLOps and
DataOps with DevOps

Bestoun S. Ahmed, Ph.D.

Model Validation

DevOps Integration

Validate ML models and
data pipelines

Automated Testing Handle large-scale ML

deployments
Scalability

Future Research
Directions with

Al and Data in
Operation

Human-in-the-loop

Integrate human oversight
Explainability Lle,

Understand and validate ML
decisions

74 KARLSTAD UNIVERSITY
Department of Computer Science

75 KARLSTAD UNIVERSITY
Department of Computer Science

Bestoun S. Ahmed, Ph.D.

